Probability Theory without Bayes' Rule
نویسنده
چکیده
Within the Kolmogorov theory of probability, Bayes’ rule allows one to perform statistical inference by relating conditional probabilities to unconditional probabilities. As we show here, however, there is a continuous set of alternative inference rules that yield the same results, and that may have computational or practical advantages for certain problems. We formulate generalized axioms for probability theory, according to which the reverse conditional probability distribution P (B|A) is not specified by the forward conditional probability distribution P (A|B) and the marginals P (A) and P (B). Thus, in order to perform statistical inference, one must specify an additional “inference axiom,” which relates P (B|A) to P (A|B), P (A), and P (B). We show that when Bayes’ rule is chosen as the inference axiom, the axioms are equivalent to the classical Kolmogorov axioms. We then derive consistency conditions on the inference axiom, and thereby characterize the set of all possible rules for inference. The set of “first-order” inference axioms, defined as the set of axioms in which P (B|A) depends on the first power of P (A|B), is found to be a 1-simplex, with Bayes’ rule at one of the extreme points. The other extreme point, the “inversion rule,” is studied in depth.
منابع مشابه
Decision Rules, Bayes' Rule and Ruogh Sets
This paper concerns a relationship between Bayes’ inference rule and decision rules from the rough set perspective. In statistical inference based on the Bayes’ rule it is assumed that some prior knowledge (prior probability) about some parameters without knowledge about the data is given first. Next the posterior probability is computed by employing the available data. The posterior probabilit...
متن کاملBehavioral Finance Models and Behavioral Biases in Stock Price Forecasting
Stock market is affected by news and information. If the stock market is not efficient, the reaction of stock price to news and information will place the stock market in overreaction and under-reaction states. Many models have been already presented by using different tools and techniques to forecast the stock market behavior. In this study, the reaction of stock price in the stock market was ...
متن کاملBelief Revision in Probability Theory
In a probability-based reasoning system, Bayes’ theorem and its variations are often used to revise the system’s beliefs. However, if the explicit conditions and the implicit conditions of probability assignments are properly distinguished, it follows that Bayes’ theorem is not a generally applicable revision rule. Upon properly distinguishing belief revision from belief updating, we see that J...
متن کاملQuantum probability updating from zero priors (by-passing Cromwells rule)
Cromwell’s rule (also known as the zero priors paradox) refers to the constraint of classical probability theory that if one assigns a prior probability of 0 or 1 to a hypothesis, then the posterior has to be 0 or 1 as well (this is a straightforward implication of how Bayes’ rule works). Relatedly, hypotheses with a very low prior cannot be updated to have a very high posterior without a treme...
متن کاملCan Bayes' Rule Be Justified by Cognitive Rationality Principles
The justification of Bayes' rule by cognitive rationality principles is undertaken by extending the propositional axiom systems usually proposed in two contexts of belief change: revising and updating. Probabilistic belief change axioms are introduced, either by direct transcription of the set-theoretic ones, or in a stronger way nevertheless in the spirit of the underlying propositional princi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1411.7920 شماره
صفحات -
تاریخ انتشار 2014